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Abstract—In this paper, to maximize sum rate for downlink
multi-user holographic MIMO (HMIMO) systems, we investigate
the designs of dynamic metasurface antenna (DMA) weights
matrix and precoding matrix based on strategies of alternating
optimization (AO) and decoupling optimization (DO), respec-
tively. Specifically, in AO strategy, these two matrices can be
designed in an alternative way. Based on it, given the fixed
precoding matrix, the problem of DMA weights matrix design
is approximated by a novel one, which can be efficiently solved
but with better array gain. Meanwhile, for further complexity
reduction, the designs of these two matrices can be decoupled
in DO strategy, so that the DMA weights matrix is optimized
independently from the precoding matrix. Finally, the introduced
array gains and complexity reductions of the proposed algorithms
based on AO and DO are validated by the simulation results.

Index Terms—Dynamic metasurface antenna, holographic MI-
MO beamforming, alternating optimization, decoupling optimiza-
tion.

I. INTRODUCTION

With the increasing demand for the sixth-generation (6G)
communications [1], the concept of holographic MIMO (HMI-
MO) has been put forward for large antenna massive MIMO
systems [2] with low power consumption and hardware cost
[3]. HMIMO beamforming allows nearly spatially continuous
aperture, such that the transceiver can accommodate huge
number of elements deployed in a practically viable way [4].
As one of the typical HMIMO surfaces, dynamic metasurface
antenna (DMA) is tunable with reduced cost and power con-
sumption compared to conventional arrays [5]. Specifically, the
transceiver equipped with DMA requires less radio frequency
(RF) chains than the conventional one, which greatly facilitates
the practical implementation [6].

Technically, DMA-based HMIMO beamforming can be re-
alized with the proper choice of DMA weights [3]. To this end,
the optimizations of DMA weights are studied in [7] and [8] to
maximize the achievable sum rate in both uplink and downlink
multi-user MIMO systems. Besides, based on Riemannian
manifold optimization (RMO), the DMA weights and precod-
ing matrix are alternatively optimized for near-field downlink
multi-user MIMO systems [9], [10]. However, the designs
for DMA weights in those works all relax the Lorentzian
constraint to simplify the optimization problem, which results
in inevitable considerable performance loss [11]. Recently, a
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Fig. 1. System diagram of DMA-based multi-user downlink.

novel strategy that divides the Lorentzian constraint into the
complex constant term and the exponential term containing
the optimizable phase is proposed in [11], followed by an
alternating optimization (AO) strategy to achieve the weighted
sum rate (WSR) maximization based on RMO. To reduce
the computational complexity arising from RMO, the work
in [12] further optimizes the DMA weights by the gradient
descent projection (GDP) instead of RMO. Nevertheless, the
algorithms in [11], [12] still need to compute the Euclidean
gradient of the sum rate, which is computationally expensive
for HMIMO systems.

In this paper, the DMA weights matrix and precoding matrix
designs for downlink mutli-user HMIMO systems are studied
to maximize the sum rate. Based on AO strategy, these two
matrices are optimized alternatively. In particular, given the
fixed precoding matrix, an approximated formula of DMA
weights matrix design is proposed, which improves the sum
rate by obtaining array gain with less complexity cost. For
further complexity reduction, the design of these two matrices
based on the decoupling optimization (DO) strategy is also
proposed, in which the DMA weights matrix can be optimized
independently from the precoding matrix. Finally, simulation
results illustrate the advantages of the proposed algorithms
based on AO and DO strategy.

II. SYSTEM MODEL

Consider a downlink system in which the base station (BS)
is equipped with N DMA elements to serve K single-antenna
users. As shown in Fig. 1, the DMA array is composed of
Nd microstrip lines, and each microstrip holds Ne elements,
so as to N = Nd × Ne elements in total. The BS transmits
a precoded signal x =

∑K
k=1 fkdk to the DMA array, where
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fk ∈ CNd×1 is the precoding vector for information symbol
dk intended for the k-th user. Then the output of the DMA
array can be represented as:

x = GQx. (1)

Here, G ∈ CN×N is a diagonal matrix with ele-
ments G(i−1)Ne+l,(i−1)Ne+l = e−ρi,l(αi+jβi) for i ∈
{1, · · · , Nd}, l ∈ {1, · · · , Ne}. αi and βi denote the atten-
uation coefficient and wavenumber of microstrip i, ρi,l is the
location of the l-th element in the i-th microstrip. Meanwhile,
the block-diagonal matrix Q ∈ CN×Nd in (1) contains the
DMA elements with tunable weights, i.e.,

Q(i−1)Ne+l,q ∈ Φ =

{
j+e

jθ(i−1)Ne+l,q

2 , if i = q,

0, if i 6= q
(2)

with θ ∈ [0, 2π), which follow the Lorentzian constraint [11].
As for the downlink multi-user model, the signal received

by user k is given by

yk = hTkGQx + z, (3)

where hk ∈ CN×1 is the channel between the BS and the user
k. Then, the WSR for the system is formulated as

R (fk,Q) =

K∑
k=1

ωk log2 (1 + SINRk) , (4)

where

SINRk =
|hTkGQfk|2∑K

i 6=k |hTkGQfi|2 + σ2
(5)

denotes the signal-to-interference-plus-noise ratio (SINR), 0 ≤
ωk ≤ 1 indicates the priority of user k, and F = [f1, · · · , fK ] ∈
CNd×K is the precoding matrix. According to the DMA
weights matrix Q and the precoding matrix F, the optimization
problem of maximizing the sum rate R in (4) becomes:

max
F,Q

R (F,Q) (6a)

s.t.

K∑
k=1

‖GQfk‖2 ≤ P, (6b)

Q(i−1)Ne+l,i ∈ Φ, ∀i,∀l. (6c)

To solve it, the algorithms in [11], [12] alternatively opti-
mize Q and F, which leads to the alternating optimization
(AO) strategy. On one hand, when Q is fixed, F can be
designed by classic weighted MMSE (WMMSE) algorithm.
As shown in [11], the WMMSE algorithm iteratively updates
the percoder matrix as follows:

ηk =
hTkGQfk∑K

i=1 |hTkGQfi|2 + σ2
, (7a)

ψk =
1

1− η∗khTkGQfk
, (7b)

fk = ωkηkψk

(
µINd+

K∑
i=1

ωiψi|ηi|2QHGHhih
T
iGQ

)−1
QHGHhk.

(7c)

Here h is conjugate vector of h, and µ ≥ 0 is Lagrangian

variable for the power constraint in (6a). On the other hand,
when F is fixed, the problem to optimize Q becomes

max
Q

K∑
k=1

1

K
log2

(
1 +

|hTkGQfk|2∑K
i 6=k |hTkGQfi|2 + σ2

)
s.t. (6c).

(8)

To solve (8), by dividing the Lorentzian constraint of Q into
complex constant term and exponential term, the algorithms
in [11], [12] transform the Lorentzian constraint into the unit-
modulus constraint, followed by RMO or GDP to get the final
results of the DMA weights matrix Q. However, computing
the gradient of (8) costs O(NK2) computational complexity,
which results in high complexity burden.

III. DMA WEIGHTS MATRIX AND PRECODING MATRIX
ALTERNATING OPTIMIZATION STRATEGY

During the alternating optimization between DMA weights
matrix Q and precoding matrix F, to reduce the complexity
cost in seeking for Q, we attempt to get rid of the inter-user
interference in DMA weights matrix design, then eliminate
it with the WMMSE algorithm in precoding matrix design.
In particular, assuming that each user has equal priority,
the problem of DMA weights matrix design in (8) can be
simplified as

max
Q

K∑
k=1

1

K
log2

(
1 +
|hTkGQfk|2

σ2

)
s.t. (6c).

(9)

Then, by dividing the Lorentzian constraint of Q as Qn =
j+ejθn

2 , the Lorentzian constraint can be changed into the
unit-modulus constraint. To be more specific, by introducing
auxiliary vectors s ∈ C1×N and bk ∈ CN×1, k ∈ {1, · · · ,K},
the problem in (9) can be formulated in an equivalent way:

max
s∈C

K∑
k=1

1

K
log2

(
1 +
|ak + sbk|2

σ2

)
(10)

with

ak =
j

2

Nd∑
i=1

Ne∑
l=1

h(i−1)Ne+l,kgi,lfi,k. (11)

Here, the n-th element of s is ejθn = 2Qn − j and the [(i−
1)Ne+l]-th element of bk is h(i−1)Ne+l,kgi,lfi,k,∀i,∀l. gi,l is
a convenient expression of G(i−1)Ne+l,(i−1)Ne+l, Qn denotes
the only non-zero element of the n-th row of Q, hk,i and fk,i
denote the i-th element of hk and fk respectively. Besides, we
denote the unit-modulus constraint on s as s ∈ C = {s|sn =
ejθn , n ∈ {1, · · · , N}}.

In order to maximize the sum rate shown in (10), one can
design s under unit-modulus constraint based on the equal
gain transmission (EGT) method [13], which can improve sum
rate by harvesting considerable array gain [14]. In particular,
from (10), we present that for a specific index k, the value
|ak+sbk|2 in (10) can be maximized if and only if each term
of the following summation keeps the same phase with that
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in ak:

sbk =

Nd∑
i=1

Ne∑
l=1

h(i−1)Ne+l,kgi,lfi,k
ejθ(i−1)Ne+l

2
. (12)

Typically, for ∀i,∀l,

∠

(
h(i−1)Ne+l,kgi,lfi,k

ejθ(i−1)Ne+l

2

)
= φk, (13)

where ∠ indicates the phase and φk = ∠ (ak). To be more
specific, sbk aims to be

tk =

Nd∑
i=1

Ne∑
l=1

1

2

∣∣h(i−1)Ne+l,kgi,lfi,k∣∣ eφk . (14)

However, due to the fact that θn can not be arranged to satisfy
(13) for all k ∈ {1, · · · ,K}, only few items of (13) can be
fulfilled at the same time. Motivated by this, to minimize the
difference between sbk and tk for ∀k, we approximate the
problem (10) by the following formula:

min
s∈C

K∑
k=1

1

K
log2

(
1 +
|tk − sbk|2

σ2

)
. (15)

After that, the computationally efficient GDP can be applied
to solve (15) as follows:

∇f(s) = − 2

σ2K ln 2

K∑
k=1

tk − sbk

1 + 1
σ2 |tk − sbk|2

bHk ,

x = s− µ∇f(s),

s = ej∠x.

(16)

Here, µ is the step size given by Armijo rule [12]. Because the
objective function in (15) has Lipschitz continuous gradient,
the convergence of GDP method can be guaranteed [15]. By
solving (15), considerable array gain of DMA can be harvested
to maximize the sum rate in (10).

When Q is fixed, F can be updated by WMMSE as shown
in (7a), (7b) and (7c) until convergence. Then the DMA
weights matrix Q and the precoding matrix F are alternatively
optimized until the objective function in (6a) converges. To
summarize, the proposed algorithm is shown in Algorithm 1.
Note that, to speed up the convergence, a better initial value
s(i−1)Ne+l = gi,l,∀i,∀l is presented, instead of random
initialization in [11], [12].

Now, we analyze computational complexity of the proposed
algorithm based on AO. Respectively, we denote RW , RG and
RA as the WMMSE, GDP and outer AO iteration number.
On one hand, when optimizing F, the proposed algorithm
based on AO and schemes in [11], [12] all adopt the WMMSE
algorithm, in which the complexity is given by O(RWN

3
dK).

On the other hand, when optimizing Q, the complexity
of GDP method is given by O(RGNK). Compared to the
algorithms in [11], [12], the complexity on the DMA weights
matrix design is reduced from O(NK2) to O(NK), which
reveals that the proposed algorithm has reduced complexity.
Due to DMA weights matrix and precoding matrix are alter-
natively optimized, the total complexity of proposed algorithm
based on AO is given by O

(
RA
(
RWN

3
dK +RGNK

))
.

Algorithm 1 Proposed algorithm based on AO
Input: G,hk,∀k ∈ [1, · · · ,K]

1: Initialize s, thus Qn = j+sn
2 ,∀n.

2: repeat
Optimize F when Q is fixed.

3: while Convergence is not met do
4: Compute fk using the WMMSE algorithm shown

in (7a), (7b), (7c), ∀k.
5: end while

Optimize Q when F is fixed.
6: while Convergence is not met do
7: Compute s using GDP shown in (16).
8: end while
9: Qn = j+sn

2 ,∀n.
10: until Objective function R(F,Q) converges
Output: Q and F

IV. DMA WEIGHTS MATRIX AND PRECODING MATRIX
DECOUPLING OPTIMIZATION STRATEGY

To solve the problem in (6a), by decoupling the designs
of Q and F, the optimizations of them can be significantly
simplified. Motivated by it, DO strategy can be adopted to
decouple the designs of DMA weights matrix and precoding
matrix. Specifically, the problem of DMA weights matrix
design based on DO is given by

max
Q

K∑
k=1

1

K
log2

(
1 +
||hTkGQ||22

σ2

)
,

s.t. (6c).

(17)

From (17), it is noted that designing the DMA weights matrix
Q based on DO is independent from the precoding matrix
F, so that F can be determined after Q is finally designed
by solving (17). In contrast, based on the AO strategy, F
and Q are alternatively optimized, which inevitably results
in high computational complexity on multiple times of GDP
and WMMSE convergence as shown in the following Table 1.

By changing the Lorentzian constraint on Q into the unit-
modulus constraint, the problem in (17) can be equivalently
expressed as

max
s(i)∈M,∀i

K∑
k=1

1

K
log2

(
1 +

∑Nd
i=1

∣∣ck,i + s(i)dk(i)
∣∣2

σ2

)
(18)

with

ck,i =
j

2

Ne∑
l=1

h(i−1)Ne+l,kgi,l. (19)

Here, the l-th elements of introduced s(i) ∈ C1×Ne and
dk(i) ∈ CNe×1 are ejθ(i−1)Ne+l and h(i−1)Ne+l,kgi,l,∀i,∀k,
respectively. Furthermore, we denote M = {s|sl = ejθl , l ∈
{1, · · · , Ne}}. Inspired by the proposed algorithm based on
AO, the problem in (18) can be approximated by

min
s(i)∈M,∀i

K∑
k=1

1

K
log2

(
1 +
|rk,i − s(i)dk(i)|2

σ2

)
(20)
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Algorithm 2 Proposed algorithm based on DO
Input: G,hk,∀k ∈ [1, · · · ,K]

Optimize Q while F is ignored.
1: Initialize s and compute

∑Nd
m=1|rk,m − s(m)dk(m)|2.

2: for i = 1, · · · , Nd do
3: while Convergence is not met do
4: Compute s(i) using the GDP method in (22).
5: end while
6: Q(i−1)Ne+l = j+e

jθ(i−1)Ne+l

2 , l ∈ {1, · · · , Ne}.
7: end for

Optimize F after Q is obtained.
8: while Convergence is not met do
9: Compute fk using the WMMSE algorithm shown

in (7a), (7b), (7c), ∀k ∈ [1, · · · ,K].
10: end while
Output: Q and F

with

rk,i =

Ne∑
l=1

1

2

∣∣h(i−1)Ne+l,kgi,l∣∣ eαk,i (21)

and αk,i = ∠ (ck,i), followed by the GDP operations:

∇g(s(i)) = − 2

σ2K ln 2

K∑
k=1

(
rk,i − s(i)dk(i)

)
dHk(i)

1+ 1
σ2

∑Nd
m=1 |rk,m−s(m)dk(m)|2

,

y = s(i) − µ∇g(s(i)),

s(i) = ej∠y.
(22)

By adopting GDP to get solution of each s(i),∀i, the DMA
weights matrix Q can be determined.

After Q is finally determined by solving (17), the precoding
matrix F can be optimized by WMMSE as shown in (7a),
(7b) and (7c) until convergence. To conclude, the proposed
algorithm based on DO is shown in Algorithm 2.

Now, we analyze its computational complexity and compare
it with those algorithms based on AO strategy. As shown
in Algorithm 2, first of all, the complexity of calculating∑Nd
m=1 |rk,m − s(m)dk(m)|2 in (22) is KNd(Ne + 1). Then,

the GDP method in (22) is adopted for Nd times to get
solution of each s(i),∀i. The complexity of GDP method in
(22) is O (RGNeK). Finally, F is designed by the WMMSE
algorithm with O

(
RWN

3
dK
)

complexity. Overall, the com-
plexity of the proposed algorithm based on DO is given by
O
(
RWN

3
dK +RGNK

)
.

Obviously, compared with those algorithms based on AO,
the computational complexity of the proposed algorithm based
on DO can be greatly reduced by avoiding multiple times
of GDP and WMMSE convergence. Note that though the
ignorance of F in DMA weights matrix design in DO results
in inevitable performance loss, the following simulation results
show that it is acceptable.

V. SIMULATION RESULTS

In this section, we compare the sum rate achieved by
the proposed algorithms based on AO and DO with other
algorithms in [11], [12]. To enable HMIMO beamforming, the
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Fig. 2. Convergence behavior of different algorithms under the setting of
Nd = 15, Ne = 10, K = 5 and P = 23dBm.

spacing between DMA elements and micrstrips is set to be λ
5

[3] and α = 0.6m−1, β = 827.67m−1 [11]. The transmitter
power and receiver noise is set to be 23dBm and -80dBm.
We consider the practical Saleh-Valenzuela millimeter wave
channel model [16] with 28GHz carrier frequency. The large-
scale fading factor is described by the square root of the
distance-dependent path loss [11], given as

Λ(τ, ξ)[dB] = −45− 25 log10(τ), (23)

where τ is the BS-user distance in meters, randomly dis-
tributed from 35 to 300. The user priority is set to be equal.
We further consider fully digital (FD) antenna architecture
obtained by WMMSE algorithm [17].

Fig. 2 shows the convergence behaviors of different al-
gorithms and Table 1 lists the corresponding computational
complexities. Compared to the algorithms in [11], [12], the
proposed algorithm based on AO achieves higher sum rate with
lower complexity. Besides, the proposed algorithm based on
DO has much lower complexity with acceptable performance
loss, which illustrates that it can achieve trade-off between
performance and complexity. Though the FD architecture can
attain the highest sum rate, it suffers expensive RF chain
hardware cost.

To evaluate the performance of various algorithms under
different DMA array size, the mircostrip number is varied in
Fig. 3. It illustrates that the proposed algorithm based on AO
always attain better performance compared to other algorithms
regardless of DMA array size. Besides, we note that with larger
DMA array size, the performance advantage of the proposed
algorithm based on AO over other algorithms is more obvious.
It can be attributed to the fact that the proposed algorithm
based on AO can make better use of DMA array gain.

In Fig. 4, it can be observed that as the user number
increases, each algorithm suffers performance degradation
due to enhanced inter-user interference. We observe that the
proposed algorithm based on AO still remains more excellent
than other algorithms even under high inter-user interference
situation, because it can still obtain array gain to improve sum
rate in DMA weights matrix design.
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TABLE I
THE COMPUTATIONAL COMPLEXITIES OF PROPOSED ALGORITHMS AND OTHER ALGORITHMS

Overall complexity RW RG RA Complexity value

Proposed algorithm based on AO O
(
RA
(
RWN

3
dK +RGNK

))
3 12 5 298125

Proposed algorithm based on DO O
(
RWN

3
dK +RGNK

)
3 2 – 52125

The algorithms in [11], [12] O
(
RA
(
RWN

3
dK +RGNK

2
))

3 16 3 331875
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Fig. 3. WSR achieved by different algorithms with the increasing number
of microstrips for multi-user downlink HMIMO systems with Ne = 10, K =
5 and P = 23dBm.
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Fig. 4. WSR achieved by different algorithms with the increasing number
of users for multi-user downlink HMIMO systems with Nd = 16, Ne = 10
and P = 23dBm.

VI. CONCLUSION

In this paper we focus on DMA weights matrix design and
precoding matrix design in AO and DO strategy to maximize
sum rate in the downlink multi-user HMIMO system. Specifi-
cally, these two matrices can be alternatively designed in AO.
Based on it, we propose novel problem formulation of the
DMA weights matrix design to harvest array gain, which can
be solved with reduced complexity. To achieve performance
and complexity trade-off, an algorithm based on DO is also
proposed, in which the DMA weights matrix is optimized
independently from the precoding matrix. Finally, simulation
results confirm the advantages of the proposed algorithms on

performance and complexity compared to other algorithms.
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